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Abstract

A genetic deficit mediated by SNP rs143383 that leads to reduced expression of GDF5 is strongly associated with large-joint
osteoarthritis. We speculated that this deficit could be attenuated by the application of exogenous GDF5 protein and as a
first step we have assessed what effect such application has on primary osteoarthritis chondrocyte gene expression.
Chondrocytes harvested from cartilage of osteoarthritic patients who had undergone joint replacement were cultured with
wildtype recombinant mouse and human GDF5 protein. We also studied variants of GDF5, one that has a higher affinity for
the receptor BMPR-IA and one that is insensitive to the GDF5 antagonist noggin. As a positive control, chondrocytes were
treated with TGF-b1. Chondrocytes were cultured in monolayer and micromass and the expression of genes coding for
catabolic and anabolic proteins of cartilage were measured by quantitative PCR. The expression of the GDF5 receptor genes
and the presence of their protein products was confirmed and the ability of GDF5 signal to translocate to the nucleus was
demonstrated by the activation of a luciferase reporter construct. The capacity of GDF5 to elicit an intracellular signal in
chondrocytes was demonstrated by the phosphorylation of intracellular Smads. Chondrocytes cultured with TGF-b1
demonstrated a consistent down regulation of MMP1, MMP13 and a consistent upregulation of TIMP1 and COL2A1 with
both culture techniques. In contrast, chondrocytes cultured with wildtype GDF5, or its variants, did not show any consistent
response, irrespective of the culture technique used. Our results show that osteoarthritis chondrocytes do not respond in a
predictable manner to culture with exogenous GDF5. This may be a cause or a consequence of the osteoarthritis disease
process and will need to be surmounted if treatment with exogenous GDF5 is to be advanced as a potential means to
overcome the genetic deficit conferring osteoarthritis susceptibility at this gene.
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Introduction

Growth differentiation factor 5 (GDF5) is closely related to the

bone morphogenetic proteins (BMPs) and is a member of the

transforming growth factor- b (TGF-b) superfamily. GDF5 is

involved in bone and cartilage development, maintenance and

repair and is a marker for early joint formation [1].

GDF5 signalling requires both BMP receptor type II (BMPR-II)

and BMP receptor type IB (BMPR-IB). BMPR-II is constitutively

active and upon ligand binding, transphosphorylates BMPR-IB

[2]. This leads to the phosphorylation of the downstream Smad1/

5/8 signalling molecules. Although GDF5 shows binding affinity

towards BMP receptor type IA (BMPR-IA), GDF5 has been

shown to exhibit a 17-fold higher affinity towards BMPR-IB,

compared to BMPR-IA [2]. The phosphorylated Smad 1/5/8

then complexes with Smad 1/4, and the complex translocates into

the nucleus and regulates transcription of target genes [3]. These

targets include COL2A1 and ACAN, which encode type II collagen

and aggrecan, the principal structural proteins of cartilage [4].

GDF5 signalling can be negatively regulated by soluble proteins

including noggin, which binds to GDF5 extracellularly and blocks

its interaction with the cell surface receptors [5,6].

The importance of GDF5 in the development of synovial joints

has been shown in mouse models and human diseases. The

presence of a frame shift mutation in Gdf5 in the brachypodism

mouse results in the inability to form (homozygote) or to maintain

(heterozygote) normal synovial joint function [7]. Human chon-

drodysplasias caused by mutations in GDF5 include Hunter-

Thompson syndrome, Grebe syndrome and Brachydactyly type C,

which are associated with various skeletal abnormalities [8].

As the role of GDF5 in skeletogenesis is well established, GDF5

was examined in a candidate gene analysis aiming to identify genes

that harbour osteoarthritis (OA) susceptibility alleles in Japanese

and Han Chinese populations [9]. OA is characterised by the

gradual focal loss of articular cartilage in synovial joints such as the

hips and the knees, leading to full thickness lesions that expose the

underlying subchondral bone. The authors identified a single

nucleotide polymorphism (SNP) in the 59 untranslated region
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(UTR) of GDF5 (rs143383, C/T) as being associated with OA.

The Asian report of OA association to rs143383 was quickly

replicated in a European study [10]. Cartilage is synthesised and

maintained by a single cell type, the chondrocyte, and reduced

transcription in the chondrocytes of OA patients of the T-allele of

rs143383 relative to its C- allele has been demonstrated [11].

Overall, these results suggest that the GDF5 OA susceptibility is

mediated through a reduction in expression of the gene.

Several animal studies have reported on the use of GDF5 in

therapeutics. Studies in rats have shown that GDF5 can be used to

stimulate tendon healing [12,13]. GDF5 has also been shown to be

effective in repair or slowing down the degeneration of interver-

tebral discs in mouse, rabbit and bovine models [14–17]. Also, it

has been reported that GDF5 enhanced chondrogenic differenti-

ation and hypertrophy of human MSCs, thus showing potential to

be used as a therapeutic in fracture repair [18].

Two publications have shown promising results of the

stimulatory effects of GDF5 on matrix synthesis in human

articular chondrocytes in vitro. Bobacz et al. [19] showed an

increase in glycosaminoglycan (GAG) synthesis in normal and

OA chondrocytes cultured with GDF5, and an increase in ACAN

mRNA levels. Chubinskaya et al. [20] observed an increase in

GAG synthesis in alginate bead cultures of chondrocytes in the

presence of GDF5.

The fact that the OA associated T-allele of rs143383 mediates

reduced expression of GDF5 has led to us hypothesising that one

means of alleviating this genetic deficit could be via the supply of

exogenous GDF5 to chondrocytes. Investigating the logistics of

this is the aim of this report. Chondrocytes harvested from OA

patients that had undergone total hip or total knee replacement

surgery were cultured with or without recombinant GDF5. We

then assessed whether this triggers expression changes of genes

involved in metabolic processes in chondrocytes.

Materials and Methods

Ethics Statement and Cartilage Samples from OA Patients
The Newcastle and North Tyneside research ethics committees

granted ethical approval for the collection of cartilage from

patients undergoing hip or knee joint replacement for primary OA

(REC reference number 09/H0906/72). Each donor provided

informed consent. The project was discussed with the donor

verbally by a trained research nurse and if the donor agreed to

participate written consent was then taken. This consent

procedure was approved by the ethics committee and the written

consent was then filed by the consenting nurse. OA status was

confirmed using pre-operative records. All patients had full-

thickness cartilage lesions.

Cartilage Digestion and Chondrocyte Culture with
Exogenous GDF5

Chondrocytes were isolated by enzymatic digestion of cartilage

as previously described [21]. The cells were cultured in DMEM

culture media supplemented with 10% FBS, 2 mM glutamine,

100 U/ml penicillin, 100 mg/ml streptomycin and 50 U/ml

nyastatin.

For western blot analysis, chondrocytes were cultured at

350,000 cells/well in 6-well cell culture plates in 2 ml of culture

media. Once 80% confluent, the cells were cultured in serum-free

media overnight, before stimulation with 100 ng/ml of each of the

GDF5 proteins. Cells were isolated at four different time points

after stimulation (15 minutes, 30 minutes, 1 hour and 2 hours).

TGF-b1 (5 ng/ml) stimulation for one hour was used as a positive

control.

For gene expression analysis, chondrocytes were cultured in

monolayer and as high-density micromass. For monolayer culture,

chondrocytes were cultured at 10,000 cells/well in 96-well cell

culture plates in 200 ml of DMEM culture media until 80%

confluent. Cells were then cultured in serum-free media overnight.

Five plates were established since the cells were to be isolated at

five different time points (0 hours, 6 hours, 12 hours, 24 hours and

48 hours). Six wells per time point were used for each treatment

group (untreated, mouse GDF5, human wild type GDF5 and the

two variants A and B). For micromass culture, chondrocytes were

cultured in wells of a 24-well culture plate at a density of 400,000

cells/well in 20 ml droplets of media. Four replicates were

prepared for each treatment group (untreated, 100 ng/ml mouse,

human wildtype GDF5, human GDF5 variants A and B, and

5 ng/ml human TGF-b1). The cells were incubated at 37uC for 2

hours and 400 ml of media containing the growth factors was then

added and the cells were incubated for 5 days. In all experiments,

untreated control wells received serum-free media and cells were

incubated at 37uC until the time points were reached. Details

regarding the 25 patients studied using monolayer analysis and the

19 patients studied using micromass analysis are listed in

supplementary Tables S1 and S2 respectively.

Gene Expression Analysis Using Quantitative Real Time
PCR

TaqMan primers and probes were used to analyse gene

expression changes in a panel of genes (Table S3). Gene expression

was measured relative to the housekeeping genes GAPDH, HPRT1

and 18S. Reactions were performed on an ABI PRISM 7900HT

Real Time PCR System. The relative expression for each gene

was analysed using the comparative cycle threshold (Ct) method

using SDS 2.3 software (Applied Biosystems).

For gene expression analysis directly from cartilage tissues, 1 mg

of RNA was extracted from the tissues as described previously

[11]. cDNA was then synthesised using a SuperScript First-Strand

cDNA Synthesis kit (Invitrogen) according to the manufacturer’s

instructions.

For gene expression analysis of chondrocytes cultured in

monolayer, at appropriate time points the cells were lysed using

30 ml of Cells-to-cDNA II Cell Lysis Buffer (Ambion) at 75uC for

15 minutes. Eight ml of the cell lysate was reverse transcribed using

First-Strand cDNA Synthesis kit using M-MLV reverse transcrip-

tase (Invitrogen) according to the manufacturer’s instructions.

For gene expression analysis of chondrocytes cultured in

micromass, the cells were washed in PBS and scraped off the

surface of the well using a pipette tip. The cells in PBS were

centrifuged at 13,000 rpm for 5 minutes to obtain a cell pellet.

RNAs were isolated from the cell pellets using the Trizol/

chloroform method according to manufacturer’s guidelines

(Invitrogen) and were taken forward for cDNA synthesis.

Western Blot Analysis
Cells were lysed in 30 ml of protein lysis buffer (50 mM Tris,

10% v/v glycerol, 50 mM NaF, 1 mM EGTA, 1 mM EDTA,

10 mM glycerol phosphate, 1% v/v Triton X-100, 16 complete

inhibitor cocktail, 1 mM microcystin-LR and 1 mM Na3VO4).

Ten mg of protein were electrophoresed through a 12% bis-

acrylamide gel and transferred to a polyvinylidene fluoride

membrane (GE Healthcare). The membrane was then blocked

and probed with antibodies against BMPR-II (goat polyclonal;

Santacruz, cat no. sc-5682), BMPR-IA (rabbit polyclonal;

Santacruz, cat no. sc-20736), BMPR-IB (rabbit polyclonal;

Santacruz, cat no. sc-25455) or phospho-Smad1 (Ser463/465)/

Smad5 (Ser463/465)/Smad8 (Ser426/428; rabbit polyclonal; Cell

Effect of Exogenous GDF5 on Primary Chondrocytes
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Signalling, cat no. 9511), overnight. Anti-b-actin (Sigma, cat no.

A5316) antibody was used as a loading control. Enhanced

chemiluminescent reagent (GE Healthcare) was used for visual-

isation of the proteins using a G:BOX gel doc system (Syngene).

Transfection of SW1353 Cells with Smad 1/5/8 Luciferase
Reporter Vector

Cells from the human chondrosarcoma cell line SW1353 [22]

were cultured at 17, 500 cells/well in 48-well cell culture plates in

300 ml of DMEM/F-12 media (Gibco) containing 10% FBS to

80% confluence. Cells were co-transfected with 15 ng of Renilla

vector DNA (Promega) as an internal control and 500 ng of basic

pGL3-Smad responsive reporter vector DNA using ExGen 500 in -

vitro transfection reagent (Fermentas) following the manufacturer’s

protocol. The Smad responsive reporter vector contains six

consecutive copies of the Smad-binding element, 59-CCCGTC-

TGCCCCAGCCCAGACACCGTCGACCAAC-39 [23]. The cells

were incubated at 37uC for 24 hours.

Stimulation of Cells with Exogenous Growth Factors
(GDF5, TGF-b1 and BMP-2) Post Transfection

Twenty-four hours post transfection, the cells were incubated in

150 ml of serum-free media at 37uC overnight. The cells were

stimulated with four different recombinant GDF5 proteins (mouse

GDF5, R&D Systems; human wild type GDF5 and two variants A

and B, Biopharm GmbH) at 10 ng/ml, 30 ng/ml, 100 ng/ml and

300 ng/ml. Recombinant human TGF-b1 (5 ng/ml; R&D

Systems) and BMP2 (100 ng/ml; R&D Systems) were also used

as positive controls. The experiment was performed in four

replicates. The plates were incubated at 37uC and lysed at 6 hours,

12 hours, 24 hours and 48 hours post stimulation. All of the

proteins are the active forms of the signalling molecules, free of the

latency-associated peptides.

Luciferase Reporter Assay
The cells were lysed at each time point using 65 ml of 16Passive

Lysis Buffer (Promega). Dual-Luciferase Reporter assay system

(Promega) was used to measure luciferase activity in the

transfected cells, following manufacturer’s instructions.

Figure 1. GDF5 receptor gene expression. Gene expression was measured in cartilage (A), in monolayer culture (B) and in micromass culture (C)
relative to the housekeepers, 18S, GAPDH and HPRT1. The error bars represent the standard error of the mean.
doi:10.1371/journal.pone.0086590.g001

Table 1. The amino acid substitutions of GDF5 variants A and
B.

Wildtype
mGDF5

430 PLRSHLEPTNHAVIQTLMNSMDPESTPPTCCVPTRL 466

Wildtype
hGDF5

436 PLRSHLEPTNHAVIQTLMNSMDPESTPPTCCVPTRL 472

hGDF5
variant A

436 PLRSHLEPTNHAVIQTLVNSVDPESTPPTCCVPTRL 472

hGDF5
variant B

436 PLRSHLEPTTHAVIQTLMNSMDPESTPPTCCVPTRL 472

The amino acid sequences from 430–466 for mouse GDF5 and from 436–472 for
human GDF5 proteins are shown with the change in amino acid sequences in
variant A and B highlighted in red. mGDF5, mouse GDF5; hGDF5, human GDF5.
doi:10.1371/journal.pone.0086590.t001

Effect of Exogenous GDF5 on Primary Chondrocytes
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Statistical Analysis
GraphPad Prism software was used for generating graphs and

performing statistical analyses. A P-value of less than 0.05 was

considered significant.

For luciferase activity measurements, the absorbance for firefly

luciferase was divided by that for Renilla luciferase. A two tailed

student’s t-test was used to compare the normalised values for

untreated cells versus cells stimulated with exogenous growth

factors.

For gene expression analyses, the gene expression relative to

housekeeping genes (2‘-(Ct of target gene – average Ct of

housekeeping genes)) was calculated for each treatment. A two

tailed student’s t-test was performed to compare the untreated cells

against the treated cells. The fold change in gene expression

between the treated and untreated cells was calculated for each

patient. A Wilcoxon signed rank test was then performed on the

fold change in gene expression for each gene analysed, to

determine if the data deviate significantly from a hypothetical

value of 1, which signifies no change in gene expression.

Results

GDF5 Receptor Genes are Expressed in OA Cartilage and
in Cultured OA Chondrocytes

In order to investigate the effect of adding exogenous GDF5 to

chondrocytes, it was important to first assess whether chondrocytes

Figure 2. Dose response analysis using a Smad responsive reporter assay. Y-axis represents the luciferase activity readings generated in
SW1353 cells in response to exogenous growth factor. Cells were stimulated for 6, 12, 24 and 48 hours with wildtype mouse GDF5 (A), wildtype
human GDF5 (B), human GDF5 variant A (C) and human GDF5 variant B (D). BMP2 and TGF-b1 stimulations were used as positive controls. Error bars
represent the standard error of the mean. GDF5 10, 10 ng/ml; GDF 30, 30 ng/ml; GDF5 100, 100 ng/ml; GDF5 300, 300 ng/ml. *P,0.05, **P,0.01,
***P,0.001, ****P,0.0001, *****P,0.00001, two-tailed Student’s t-test.
doi:10.1371/journal.pone.0086590.g002
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from OA patients expressed the genes BMPR-II, BMPR-IA and

BMPR-IB, which encode the receptors that GDF5 binds to. We

therefore measured the expression of these receptor genes by

quantitative real time PCR (qPCR) using cDNA synthesised from

RNA extracted directly from the cartilage tissue of 10 OA patients

(3 hip and 7 knee). All three receptor genes, in particular BMPR-II

and BMPR-IA, were expressed (Figure 1A). The expression of

BMPR-IA, which encodes the alternative type I receptor that

GDF5 binds to, was 60 fold (P = 7.261027) higher compared to

BMPR-IB, which encodes the receptor towards which GDF5

shows preferential activity. There was no significant difference

(P,0.05) in the expression of BMPR-II, BMPR-IA or BMPR-IB

between hip and knee cartilage.

We next measured the gene expression of BMPR-II, BMPR-IA

and BMPR-IB in chondrocytes that had been extracted from the

cartilage of 5 OA patients and then cultured in monolayer

(Figure 1B), and in chondrocytes that had been extracted from the

cartilage of 8 OA patients and then cultured in micromass

(Figure 1C). In both instances the cells showed a similar gene

expression pattern to that observed in cartilage tissue, with a 22

fold (P = 0.02) higher BMPR-IA expression compared to BMPR-IB

expression in monolayer and a 65 fold (P = 1.361025) higher

BMPR-IA expression compared to BMPR-IB expression in

micromass.

Protein extracted from chondrocytes from the cartilage of 3 OA

patients were analysed by western blot to determine if BMPR-II,

BMPR-IA and BMPR-IB proteins were expressed in these cells.

The receptor expression pattern correlated with gene expression

analyses, such that the cells showed higher levels of expression of

BMPR-II and BMPR-IA compared to BMPR-IB (Figure S1).

Four GDF5 Proteins were Examined
The above results demonstrated that the expression of BMPR-IA

and its protein product was higher in chondrocytes compared to

expression of BMPR-IB and its protein product. Therefore, we

chose to include in our study a recombinant human variant form

of GDF5 that was designed by Biopharm GmbH (Heidelberg,

Germany) to show increased specificity for BMPR-IA compared to

BMPR-IB (variant A). In addition, we used a second variant form

of GDF5, also designed by Biopharm that is insensitive to the

GDF5 antagonist noggin (variant B). Therefore, we used four

different recombinant GDF5 proteins in total: wildtype mouse

(R&D Systems), wildtype human (Biopharm) and the two variants,

A and B. All four are the mature form of GDF5. The amino acid

sequence difference between the mouse and human GDF5 is a

single amino acid: asparagine at position 380 in mouse is a

threonine at the comparable position (386) in human. Table 1

shows the sequence of the four GDF5 proteins encompassing the

changes introduced in variants A and B. Variant A was designed

by introducing two point mutations in GDF5 to swap two

methionine residues to valine residues at positions 453 and 456

[24,25]. Variant B was designed by exchanging the asparagine

residue at position 445 in GDF5 with threonine [26].

All Four GDF5 Proteins Elicit Smad Signalling at 100 ng/
ml

It has been shown previously that the optimal dose of GDF5 to

be used for the stimulation of chondrocytes is 100 ng/ml [27]. In

order to test this, we carried out a dose response analysis using a

Smad responsive reporter assay, which is under the transcriptional

control of Smad binding elements that drive firefly luciferase

transcription [23]. BMP2 (at 100 ng/ml) [20] and TGF-b1 (at

Figure 3. Activation of Smad signalling in OA chondrocytes after growth factor stimulation. Chondrocytes were cultured in monolayer
and stimulated with each of the four GDF5 proteins for 15 minutes, 30 minutes, 1 hour and 2 hours. TGF-b1 stimulation for 1 hour was used as a
positive control. Protein was extracted and subjected to western blot analysis using an antibody against Smad 1/5/8 (anti-Smad1/5/8), with anti-b-
actin antibody used as a loading control. This data comes from one OA patient. Identical data was obtained for a second OA patient (data not shown).
doi:10.1371/journal.pone.0086590.g003
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5 ng/ml) [28] treatments were used as positive controls. We

initially performed these experiments in OA chondrocytes, but

were unsuccessful at transfecting these cells with the reporter. We

therefore used instead the human SW1353 chondrosarcoma cell

line [22] to carry out the dose response analyses. These cells show

a similar GDF5 receptor gene expression profile to that observed

in cartilage and in cultured chondrocytes, with a 15 fold

(P = 0.0005) higher expression of BMPR-IA compared to BMPR-

IB (Figure S2).

The cells stimulated with 10 ng/ml and 30 ng/ml of mouse

GDF5 showed a significant increase in luciferase activity at 6 hours

after stimulation, compared to untreated cells. However a

significant effect was not seen at these doses at the two other

time points analysed. The cells treated with 100 ng/ml and

300 ng/ml of mouse GDF5 showed a significant increase in

luciferase activity compared to untreated cells at all time points

analysed (Figure 2A).

Stimulation of cells with 10 ng/ml of wildtype human GDF5

did not increase luciferase activity compared to untreated cells at

any of the time points analysed. Stimulation with 30 ng/ml

increased luciferase activity only at 6 hours after stimulation. Cells

cultured with 100 ng/ml GDF5 showed a significant increase in

luciferase readings at all time points. Treatment with 300 ng/ml of

wildtype human GDF5 resulted in a significant increase in

luciferase activity at 6, 12 and 48 hour time points, but not at

24 hours (Figure 2B).

Stimulation of cells with 10 ng/ml of human GDF5 variant A

did not result in a significant increase in luciferase activity, and

Figure 4. Gene expression changes in monolayer chondrocytes treated with GDF5 or TGF-b1 compared to untreated cells.
Chondrocytes were stimulated for 6, 12, 24 and 48 hours with wildtype mouse GDF5 (A), wildtype human GDF5 (B), human GDF5 variant A (C), human
GDF5 variant B (D) and TGF-b1 (E). Each cross represents a significant (P,0.05, two-tailed Student’s t-test) up/down regulation of gene expression
relative to untreated cells in one patient. Twelve patients were studied for each of the GDF5 growth factor treatments and ten patients for the TGF-b1
treatments.
doi:10.1371/journal.pone.0086590.g004
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cells stimulated with 30 ng/ml of variant A showed a significant

increase only at 6 hours post stimulation. Cells cultured with

100 ng/ml of variant A showed a significant increase in luciferase

readings at all time points. Stimulation with 300 ng/ml of variant

A resulted in a significant increase in luciferase at 6, 24 and 48

hours post stimulation, but not at 12 hours (Figure 2C).

The cells cultured with 10 ng/ml of GDF5 variant B showed an

increase in luciferase activity at 6 and 12 hours, but not at 24 or 48

hours after stimulation. The cells cultured with 30 ng/ml, 100 ng/

ml and 300 ng/ml of this variant showed significantly higher

luciferase activity at all time points (Figure 2D).

At all four time points, stimulation with BMP2 and TGF-b1

resulted in a significant increase in luciferase activity. Further-

more, BMP2 and TGF-b1 stimulations clearly elicited a greater

response at all time points than any of the GDF5 proteins.

Stimulation with 100 ng/ml of each of the four recombinant

GDF5 proteins consistently and significantly increased luciferase

activity at all time points. Furthermore, there was no significant

difference between the luciferase readings generated in cells

stimulated with 100 ng/ml and 300 ng/ml of GDF5 protein. As

noted above, it has been shown that 100 ng/ml is the optimal

concentration of recombinant GDF5 to be used in chondrocyte

culture [27]. Based on our results and this previous data, we

therefore chose to use 100 ng/ml GDF5 for the stimulation of OA

chondrocytes in subsequent experiments.

All Four GDF5 Proteins Activate Smad Signalling in OA
Chondrocytes

Protein was extracted from chondrocytes that had been grown

in monolayer and stimulated with 100 ng/ml of each of the four

GDF5 proteins for between 15 minutes and two hours. The

protein was then subjected to western blot analysis using an

antibody against phosphorylated Smad 1/5/8, with anti-b-actin

antibody used as a loading control. The cells were also stimulated

with TGF-b1 for 1 hour as a positive control. The Smad 1/5/8

signalling pathway was clearly activated in response to each GDF5

protein at all time points analysed (Figure 3).

None of the GDF5s Elicit a Consistent Target Gene
Response by OA Chondrocytes in Monolayer

Chondrocytes harvested from 25 OA patients (Table S1) were

cultured in monolayer with (treated) or without (untreated) 100 ng/

ml of the GDF5 proteins. Twleve of the 25 patients were cultured

with wildtype mouse GDF5 (patients 1–9 and 21–23), three of

whom were also separately cultured with human GDF5 and its two

variants and with 5 ng/ml TGF-b1 (patients 21–23) and three

separately with TGF-b1 (patients 7–9). Twelve of the 25 were

cultured with wildtype human GDF5 (patients 10, 11,14–18 and

21–25), five of whom were also separately cultured with variant A

and separately with variant B (patients 14–18) and two with human

GDF5 variants and TGF-b1 (patients 24–25). Two of the 25 were

cultured with variant A and separately with variant B (patients 12

and 13). Finally, two of the 25 were cultured only with TGF-b1

(patients 19 and 20). None of the culturing was performed with two

or more of the growth factor proteins in the same culture mix.

The cells were lysed at four time points after stimulation (6, 12,

24 and 48 hours). Changes in the expression of the six target genes

MMP13, MMP1, TIMP1, COL2A1, ACAN, and SOX9, which code

for proteins that have key catabolic and anabolic roles in

chondrocyte biology, were then measured by qPCR. The relative

gene expression of the test genes was compared between the

treated and the untreated cells using a student’s two-tailed t-test.

The significant (P,0.05) up/down changes in gene expression in

response to stimulation with GDF5 proteins and with TGF-b1 are

plotted in Figure 4. The actual values of these gene expression

changes are listed in Tables S4–S8. A Wilcoxon signed rank test

was performed to assess whether the chondrocytes showed a

significant trend in response to each GDF5 and to TGF-b1. P-

values are listed in Table 2.

Our results show that OA chondrocytes can respond to

exogenous GDF5, with P-values greater than 0.05 for each of the

six target genes analysed (Tables S4–S7), but not in a consistent

manner. Some patients did not show a significant response to GDF5

stimulation at all (for example, patient 2), and where a response was

observed at one time point, this did not necessarily persist through to

further time points. For example, patient 9 showed a 1.64 fold

significant upregulation of MMP13, 6 hours post stimulation with

wildtype mouse GDF5, but with no change in MMP13 expression at

12, 24 or 48 hours post stimulation (Table S4). Also, the changes in

gene expression observed were not at all predictable, in that they

were not always in the same direction. For example, MMP13 was

both up and down regulated in response to mouse, human and the

variant A form of GDF5.

All ten patients cultured with TGF-b1 did however respond in a

clearly consistent manner, showing an upregualtion of TIMP1

(P,0.0001) and COL2A1 (P,0.0001) and a down regulation of

MMP13 (P = 0.0002), MMP1 (P,0.0001), ACAN (P,0.0001) and

SOX9 (P,0.0001; Figure 4E, Table 2 and Table S8).

We also harvested cells at 0 hours, prior to growth factor

stimulation and were used for cDNA synthesis to measure the gene

expression levels of the three GDF5 receptor genes (BMPR-II,

BMPR-IA and BMPR-IB) and of the two TGF-b1 receptor genes

Table 2. P-values calculated using the Wilcoxon signed rank test for each target gene following growth factor stimulation in
monolayer culture.

Target gene Growth factor

Wildtype mGDF5 Wildtype hGDF5 hGDF5 A hGDF5 B TGF-b1

MMP13 0.4849 0.0735 0.0598 0.1725 0.0002

MMP1 0.735 0.2884 0.6929 0.8697 ,0.0001

TIMP1 0.2535 0.0561 0.5393 0.2827 ,0.0001

COL2A1 0.4243 0.9755 0.2528 0.4823 ,0.0001

ACAN 0.1236 0.0663 0.3942 0.9632 ,0.0001

SOX9 0.7269 0.1961 0.2613 0.364 ,0.0001

mGDF5, mouse GDF5; hGDF5, human GDF5. P,0.05 are highlighted in red.
doi:10.1371/journal.pone.0086590.t002
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(TGFBR-II and TGFBR-I; Figure S3). All of the patients studied

demonstrated expression of the receptors, whilst for each receptor

tested the levels of expression were comparable between patients.

The lack of a consistent response following exogenous GDF5

treatment cannot therefore be due to an absence of receptor or to

a relatively low level of receptor gene expression.

None of the GDF5s Elicit a Consistent Target Gene
Response by OA Chondrocytes in Micromass

Chondrocytes harvested from 19 OA patients (Table S2) were

cultured with (treated) or without (untreated) 100 ng/ml of each of

the GDF5 proteins. One of the 19 was cultured separately with

wildtype human GDF5 and its variants (patient 21). Five of the 19

were cultured with wildtype mouse GDF5 and separately with 5 ng/

ml of TGF-b1 (patients 22, 28–31). Another four were cultured with

wildtype human GDF5 (patients 32–35). Four more were cultured

with variant A and separately with variant B (patients 36–39). The

remaining seven were cultured separately with wildtype mouse

GDF5, wildtype human GDF5, variant A, variant B and with TGF-

b1 (patients 23–27). As for the monolayer analysis, none of the

culturing was performed with two or more of the growth factor

proteins in the same culture mix.

The cells were lysed 5 days after stimulation, which is a time

period sufficient for the cells to produce an extracellular matrix in

culture, as determined by Alcian blue staining (data not shown).

qPCR was used to measure any changes in the expression of the

panel of six target genes. The relative gene expression of the target

genes was compared between the treated and the untreated cells

by performing a student’s two-tailed t-test.

The significant (P,0.05) up/down changes in gene expression

in response to stimulation with GDF5 proteins and with TGF-b1

are plotted in Figure 5. The actual values of these gene expression

changes are listed in Tables S9–S13. A Wilcoxon signed rank test

was performed to assess whether the chondrocytes showed a

significant trend in response to each GDF5 and to TGF-b1. P-

values are listed in Table 3.

As for the monolayer analysis, there was a limited and

discordant response of the micromasses to GDF5, with any

change in gene expression often not in the same direction. For

example, in response to human GDF5 variant B, patients 24 and

38 showed a 0.78 and 0.69 fold significant down regulation of

MMP13 whereas patients 26 and 27 showed a 1.98 and 1.52 fold

significant upregulation of this gene.

However, and was observed for monolayer analysis, the patients

cultured with TGF-b1 did respond in a clearly consistent manner

(Table S13 and Figure 5E). TGF-b1resulted in a down regulation

of MMP13 (P = 0.0090) and MMP1 (P = 0.0039) and an upregula-

tion of TIMP1 (P = 0.0020) and COL2A1 (P = 0.0020), SOX9

(P = 0.0091) and ACAN (P = 0.002). The direction of the responses

for MMP13, MMP1, TIMP1 and COL2A1 were the same as those

seen for the monolayer chondrocytes. However, the upregulation

observed for SOX9 and ACAN in micromass culture was opposite

to what was observed in monolayer. This probably reflects

differences between the two culture conditions [28].

We measured the expression of GDF5 and TGF-b1 receptor

genes in chondrocytes from patients 21–39 after 5 days of culture

in micromass without growth factor stimulation (Figure S4). As in

the monolayer analysis (Figure S3) all of the patients demonstrated

expression of the receptors, whilst for each receptor tested the

levels of expression were comparable between the patients. There

was therefore no link between receptor gene expression and

response to growth factor stimulation.

Discussion

We initially demonstrated the expression of all three GDF5

receptor genes in RNA extracted directly from cartilage chondro-

cytes and in RNA derived from the chondrocyte monolayer and

micromass cultures. In all three cases BMPR-IB, which encodes

the type I receptor that GDF5 preferentially binds to, showed a

lower level of expression relative to BMPR-II and BMPR-IA.

Western blot analysis confirmed lower levels of the BMPR-IB

protein. Others have also previously noted a difference in the

expression of the proteins encoded by these genes in OA cartilage

[29]. We therefore chose to study, in addition to wildtype mouse

and human GDF5, a variant form of human GDF5 that was

designed by Biopharm to preferentially bind to BMPR-IA. Also,

we included in our study another variant form of GDF5 that was

Figure 5. Gene expression changes in micromass chondrocytes treated with GDF5 or TGF-b1 compared to untreated cells.
Chondrocytes were stimulated for 5 days with wildtype mouse GDF5 (A), wildtype human GDF5 (B), human GDF5 variant A (C), human GDF5 variant B
(D) and TGF-b1 (E). Each cross represents a significant (P,0.05, two-tailed Student’s t-test) up/down regulation of gene expression relative to
untreated cells in one patient. Ten patients were studied for each of the growth factor treatments.
doi:10.1371/journal.pone.0086590.g005

Table 3. P-values calculated using the Wilcoxon signed rank test for each target gene following growth factor stimulation in
micromasss culture.

Target gene Growth factor

Wildtype mGDF5 Wildtype hGDF5 hGDF5 A hGDF5 B TGF-b1

MMP13 0.1027 0.5074 0.7596 0.9188 0.0090

MMP1 0.6953 0.1055 0.2210 0.1934 0.0039

TIMP1 0.3326 0.0645 1.0000 0.0829 0.0020

COL2A1 0.2324 1.0000 0.2324 0.6250 0.0020

ACAN 0.4065 0.8203 0.5566 0.6101 0.0020

SOX9 0.8383 0.1055 0.4316 0.5566 0.0091

mGDF5, mouse GDF5; hGDF5, human GDF5. P,0.05 are highlighted in red.
doi:10.1371/journal.pone.0086590.t003
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designed by Biopharm to be insensitive to the GDF5 antagonist

noggin.

Each of the four forms of GDF5 increased luciferase activity of a

Smad responsive vector and they also phosphorylated Smad 1/5/

8, confirming that they were able to bring about translocation of a

growth factor signal. They were also able to stimulate a change in

the expression of a panel of target genes in both monolayer and

micromass chondrocytes. However, and unlike TGF-b1, the

response of chondrocytes was not at all consistent for any of the

four different forms of GDF5. The response to TGF-b1

demonstrates that chondrocytes from OA patients are clearly

capable of responding to growth factors of the TGF-b superfamily

in a predictable manner; the inconsistency with regards to GDF5

is not therefore a systemic characteristic of these cells. We also

measured the gene expression levels of GDF5 and TGF-b1

receptor genes in chondrocytes from each patient and did not find

any link between their response to exogenous growth factors and

the their receptor gene expression levels. However, it is possible

that the GDF5 receptor expression levels may change during the

course of the experiment, which may account for some of the

inconsistencies in response seen between time points and among

patients. Also, the dose of exogenous GDF5 that we used may be

suboptimal or inhibitory for some samples, and may generate

inconsistent results between patients.

Guerne et al. [30] have shown a reduction in proliferative

response with increasing age in chondrocytes in response to the

growth factors PDGF-AA, FGF-2, IGF-1 and TGF-b1. Interest-

ingly, the authors observed that TGF-b1 was the most potent

stimulant analysed, and was the only factor that consistently and

significantly increased the proliferation rate in chondrocytes from

older donors. Loeser et al. [31] have also reported on a reduction

in the chondrocyte response to IGF-1 with increasing age and

histologic OA score in cynomolgus monkeys that have naturally

occurring OA. However, our principal observation was that where

there was a response to GDF5, this response was inconsistent

between the chondrocytes of OA patients.

The association of the GDF5 SNP rs143383 with OA is one of

the most robust reported to-date, with replication observed in

Asians and Europeans, despite the different polymorphic archi-

tecture of the gene between these two ethnics groups, and with a

variety of supporting functional data, much of which directly

targets the SNP itself (reviewed in [32]). The prevailing data

therefore strongly supports further investigation of this gene and its

protein in the context of OA.

Whether the discordant response of chondrocytes to GDF5 that we

have observed is a cause or a consequence of the OA disease process

we cannot say. A loss of consistent response to growth factors during

ageing may contribute to the development and progression of OA,

resulting in an altered balance between anabolism and catabolism in

some patients. Hence, it is important to develop a means to enhance

the responsive capacity of chondrocytes if GDF5 can potentially be

used as a therapeutic to overcome the genetic deficit mediated by the

OA risk allele at rs143383.

Supporting Information

Figure S1 GDF5 receptor protein expression in cultured
chondrocytes. The figure is representative of three separate

experiments.

(DOCX)

Figure S2 GDF5 receptor gene expression in SW1353
chondrosarcoma cells. Gene expression was measured relative

to the housekeepers, 18S, GAPDH and HPRT1. Five technical

replicates were performed for each gene. The error bars represent

the standard error of the mean.

(DOCX)

Figure S3 GDF5 and TGF-b1 receptor gene expression.
Gene expression of BMPR-II (A), BMPR-IA (B) and BMPR-IB (C)

was measured in chondrocytes from 25 patients that were cultured

in monolayer prior to stimulation with exogenous GDF5. Gene

expression of TGFBR-II (D) and TGFBR-I (E) was measured in

chondrocytes from 10 patients that were cultured in monolayer

prior to stimulation with exogenous TGF-b1. Gene expression was

measured relative to the housekeepers, 18S, GAPDH and HPRT1.

The error bars represent the standard error of the mean of six

biological replicates. Dotted lines represent the average gene

expression across all patients studied.

(DOCX)

Figure S4 GDF5 and TGF-b1 receptor gene expression.
Gene expression of BMPR-II (A), BMPR-IA (B) and BMPR-IB (C)

was measured in untreated chondrocytes from 19 patients that

were cultured in micromass which were used to analyse the

response to exogenous GDF5. Gene expression of TGFBR-II (D)

and TGFBR-I (E) was measured in chondrocytes from 10 patients

that were cultured in micromass which were used to analyse the

response to exogenous TGF-b1. Gene expression was measured

relative to the housekeepers, 18S, GAPDH and HPRT1. The error

bars represent the standard error of the mean of four biological

replicates. Dotted lines represent the average gene expression

across all patients studied.

(DOCX)

Table S1 Details of the OA patients and of the growth
factors used to stimulate their chondrocytes in the
monolayer culture experiment. F, female; M, male; mGDF5,

mouse GDF5; hGDF5, human GDF5.

(DOCX)

Table S2 Details of the OA patients and of the growth
factors used to stimulate their chondrocytes in the
micromass culture experiment. F, female; M, male;

mGDF5, mouse GDF5; hGDF5, human.

(DOCX)

Table S3 Primer and probe sequences for the TaqMan
assays used for quantitative real time PCR.
(DOCX)

Table S4 The changes in expression of the target genes
following OA chondrocyte monolayer culturing and
stimulation with wildtype mouse GDF5. The chondrocytes

from twelve OA patients were cultured with or without wildtype

mouse GDF5 and gene expression was measured at 6, 12, 24 and

48 hours post stimulation. The actual values of any significant

(P#0.05, two-tailed Student’s t-test) fold changes in expression of

the six target genes in response to the stimulation are shown in

bold text. A value greater than 1 denotes an up regulation of gene

expression and a value less than 1 denotes a down regulation of

gene expression.

(DOCX)

Table S5 The changes in expression of the target genes
following OA chondrocyte monolayer culturing and
stimulation with wildtype human GDF5. The chondrocytes

from twelve OA patients were cultured with or without wildtype

human GDF5 and gene expression was measured at 6, 12, 24 and

48 hours post stimulation. The actual values of any significant

(P#0.05, two-tailed Student’s t-test) fold changes in expression of

the six target genes in response to the stimulation are shown in
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bold text. A value greater than 1 denotes an up regulation of gene

expression and a value less than 1 denotes a down regulation of

gene expression.

(DOCX)

Table S6 The changes in expression of the target genes
following OA chondrocyte monolayer culturing and
stimulation with human GDF5 variant A. The chondrocytes

from twelve OA patients were cultured with or without variant A

and gene expression was measured at 6, 12, 24 and 48 hours post

stimulation. The actual values of any significant (P#0.05, two-

tailed Student’s t-test) fold changes in expression of the six target

genes in response to the stimulation are shown in bold text. A

value greater than 1 denotes an up regulation of gene expression

and a value less than 1 denotes a down regulation of gene

expression.

(DOCX)

Table S7 The changes in expression of the target genes
following OA chondrocyte monolayer culturing and
stimulation with human GDF5 variant B. The chondro-

cytes from twelve OA patients were cultured with or without

variant B and gene expression was measured at 6, 12, 24 and 48

hours post stimulation. The actual values of any significant

(P#0.05, two-tailed Student’s t-test) fold changes in expression of

the six target genes in response to the stimulation are shown in

bold text. A value greater than 1 denotes an up regulation of gene

expression and a value less than 1 denotes a down regulation of

gene expression.

(DOCX)

Table S8 The changes in expression of the target genes
following OA chondrocyte monolayer culturing and
stimulation with TGF-b1. The chondrocytes from ten OA

patients were cultured with or without TGF-b1 and gene

expression was measured at 6, 12, 24 and 48 hours post

stimulation. The actual values of any significant (P#0.05, two-

tailed Student’s t-test) fold changes in expression of the six target

genes in response to the stimulation are shown in bold text. A

value greater than 1 denotes an up regulation of gene expression

and a value less than 1 denotes a down regulation of gene

expression.

(DOCX)

Table S9 The changes in expression of the target genes
following OA chondrocyte micromass culturing and
stimulation with wildtype mouse GDF5. The chondrocytes

from ten OA patients were cultured with or without wildtype

mouse GDF5 and gene expression was measured 5 days post

stimulation. The actual values of any significant (P#0.05, two-

tailed Student’s t-test) fold changes in expression of the six target

genes in response to the stimulation are shown in bold text. A

value greater than 1 denotes an up regulation of gene expression

and a value less than 1 denotes a down regulation of gene

expression.

(DOCX)

Table S10 The changes in expression of the target genes
following OA chondrocyte micromass culturing and stim-
ulation with wildtype human GDF5. The chondrocytes from

ten OA patients were cultured with or without wildtype human

GDF5 and gene expression was measured 5 days post stimulation.

The actual values of any significant (P#0.05, two-tailed Student’s

t-test) fold changes in expression of the six target genes in response

to the stimulation are shown in bold text. A value greater than 1

denotes an up regulation of gene expression and a value less than 1

denotes a down regulation of gene expression.

(DOCX)

Table S11 The changes in expression of the target genes
following OA chondrocyte micromass culturing and
stimulation with human GDF5 variant A. The chondrocytes

from ten OA patients were cultured with or without variant A and

gene expression was measured 5 days post stimulation. The actual

values of any significant (P#0.05, two-tailed Student’s t-test) fold

changes in expression of the six target genes in response to the

stimulation are shown in bold text. A value greater than 1 denotes

an up regulation of gene expression and a value less than 1 denotes

a down regulation of gene expression.

(DOCX)

Table S12 The changes in expression of the target genes
following OA chondrocyte micromass culturing and
stimulation with human GDF5 variant B. The chondro-

cytes from ten OA patients were cultured with or without variant

B and gene expression was measured 5 days post stimulation. The

actual values of any significant (P#0.05, two-tailed Student’s t-test)

fold changes in expression of the six target genes in response to the

stimulation are shown in bold text. A value greater than 1 denotes

an up regulation of gene expression and a value less than 1 denotes

a down regulation of gene expression.

(DOCX)

Table S13 The changes in expression of the target genes
following OA chondrocyte micromass culturing and
stimulation with TGF-b1. The chondrocytes from ten OA

patients were cultured with or without TGF-b1 and gene

expression was measured 5 days post stimulation. The actual

values of any significant (P#0.05, two-tailed Student’s t-test) fold

changes in expression of the six target genes in response to the

stimulation are shown in bold text. A value greater than 1 denotes

an up regulation of gene expression and a value less than 1 denotes

a down regulation of gene expression.

(DOCX)

Acknowledgments

We thank Dr Mark Birch (Newcastle University, Institute of Cellular

Medicine) for gifting us with the Smad responsive reporter construct and

Dr Matt Barter (Newcastle University, Institute of Cellular Medicine) for

providing us with recombinant TGF-b1. We also thank Lucy Gentles for

her assistance with cartilage digestion and chondrocyte culture. We are

grateful for the surgeons at the Newcastle upon Tyne Hospitals NHS

Foundation Trust for providing us with access to patient tissue samples. We

thank the patients for donating their tissue samples.

Author Contributions

Conceived and designed the experiments: MR MSK JL. Performed the

experiments: MR. Analyzed the data: MR MSK JL. Contributed reagents/

materials/analysis tools: FP. Wrote the paper: MR JL. Participated in the

design of the wildtype human GDF5 and the two variant forms of GDF5

proteins used in this study: FP.

References

1. Luyten FP. (1997) Cartilage-derived morphogenetic protein-1. Int J Biochem

Cell Biol 11: 1241–4.

2. Nishitoh H, Ichijo H, Kimura M, Matsumoto T, Makishima F, et al. (1996)

Identification of type I and type II serine/threonine kinase receptors for growth/

differentiation factor-5. J Biol Chem 271: 21345–21352.

Effect of Exogenous GDF5 on Primary Chondrocytes

PLOS ONE | www.plosone.org 11 January 2014 | Volume 9 | Issue 1 | e86590



3. Massague J. (1998) TGF-b signal transduction. Annu.Rev.Biochem. 67: 753–

791.
4. Mikic B. (2004) Multiple effects of GDF-5 deficiency on skeletal tissues:

implications for therapeutic bioengineering. Ann Biomed Eng 32: 466–476.

5. Smith WC, Harland RM. (1992) Expression cloning of noggin, a new dorsalizing
factor localized to the Spemann organizer in Xenopus embryos. Cell 70(5): 829–

40.
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